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CHAPTER 2 LITERATURE REVIEW  

 
2.1 HEC-RAS 

HEC-RAS is one of the most widespread models used to calculate water-surface 

profiles and energy grade lines in 1-D, steady-state, gradually-varied flow analysis.  In  

1-D, steady-state, gradually-varied flow analysis, the following assumptions are made: 

1. Dominant velocity is in the flow direction; 

2. Hydraulic characteristics of flow remain constant for the time interval under 

consideration; and 

3. Streamlines are practically parallel and, therefore, hydrostatic pressure 

distribution prevails over channel section (Chow, 1959).  

Equations illustrating the stated assumptions are discussed in Section 2.2. 

 

2.2 FUNDAMENTAL HYDRAULIC EQUATIONS 

Fundamental hydraulic equations that govern 1-D, steady-state, gradually-varied 

flow analysis include the continuity equation, energy equation, and flow resistance 

equation.  These equations, in addition to the Froude number and other important 

hydraulic concepts, are noted in the succeeding sections.   
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2.2.1 Continuity Equation 

The continuity equation describes a discharge as constant and continuous over the 

period of time in consideration (Chow, 1959).  The concept of continuity is shown in 

Equation 2.1: 

 2211 AvAvQ ==  Equation 2.1 

where:  

A1  = cross-sectional area normal to the direction of flow at the downstream 

cross section (ft2); 

A2  = cross-sectional area normal to the direction of flow at the upstream cross 

section (ft2); 

Q = discharge (cfs); 

1v   = average velocity at the downstream cross section (ft/s); and 

2v   = average velocity at the upstream cross section (ft/s). 

Using the continuity equation, the average velocity is expressed in terms of discharge and 

cross-sectional area, which is shown in Equation 2.2: 

 
A
Qv =  Equation 2.2 

where: 

A  = cross-sectional area normal to the direction of flow (ft2); 

Q  = discharge (cfs); and 

v  = average velocity (ft/s). 
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2.2.2 Energy Equation 

Total energy at any point along an open-channel system can be defined as total 

head in feet of water (Chow, 1959).  Total head of water is calculated using the energy 

equation.  The energy equation is used to calculate the total head of water as the 

summation of the bed elevation, average flow depth, and the velocity head at a cross 

section, which is illustrated in Equation 2.3: 

 
g
vyzH

2

2
α

++=  Equation 2.3 

where: 

α  = kinetic energy correction coefficient; 

g  = acceleration of gravity (ft/s2); 

H  = total head of water (ft); 

v   = average velocity at a cross section (ft/s); 

y  = flow depth at a cross section (ft); and 

z  = bed elevation at a cross section (ft). 

The kinetic energy correction coefficient is multiplied by the velocity head to better 

estimate the velocity head at a cross section.  True velocity head at a cross section is 

generally higher than the estimated velocity head using the average velocity at a cross 

section. Kinetic energy correction coefficient aids in correcting the difference where 

values typically range between 1.03 and 1.36 for fairly straight, prismatic channels 

(Chow, 1959). 
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2.2.3 Flow Resistance Equation 

The flow resistance equation uses a form of Manning’s equation to define an 

equation that applies average roughness to the wetted perimeter of a cross section (United 

States Army Corps of Engineers (USACE), 2001a).  The flow resistance equation is 

shown in Equation 2.4 based on a form of Manning’s equation: 

 2
1

fKSQ =  Equation 2.4 

where: 

K  = channel conveyance (ft);  

Q  = discharge (cfs); and 

Sf  = friction slope (ft/ft). 

Conveyance at a cross section is obtained using Equation 2.5: 
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where: 

A   = cross-sectional area normal to the direction of flow (ft2); 

Φ  = unit conversion (Eng = 1.486 and SI = 1.000); 

K = channel conveyance (ft); 

n  = roughness coefficient; 

P = wetted perimeter (ft); and 

R = hydraulic radius (ft). 

Cross-sectional area and wetted perimeter are a function of channel geometry.  If the 

cross section is rectangular, then Equation 2.6 and Equation 2.7 apply for cross-sectional 

area and wetted perimeter, respectively: 
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 ywA =  Equation 2.6 

 wyP += 2  Equation 2.7 

where: 

 A = cross-sectional area normal to the direction of flow (ft2); 

 P  = wetted perimeter (ft); 

 w  = top width of a cross section along the water surface (ft); and 

 y  = flow depth at a cross section (ft). 

Figure 2.1 illustrates the variables used in Equation 2.6 and Equation 2.7 for a rectangular 

cross section. 

 
 

w

y y 

 
 

Figure 2.1. Variables Used to Calculate A and P 
 

 
2.2.4 Energy Loss in an Open-channel System 

Energy loss in an open channel system is defined as energy loss along a channel 

reach due to friction, contractions, expansions, eddies, spiral, and secondary currents.  In 

1-D, steady-state, gradually-varied flow analysis, energy loss is assumed to be due to 

friction, contraction, and expansion loss.   
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2.2.4.1 Friction Loss 

Friction loss is termed as energy loss along a channel reach due to roughness of 

the channel boundary.  Friction loss is calculated by multiplying average friction slope by 

the distance along the channel.  Equation 2.8 illustrates the friction loss equation: 

 xSh ff ∆=  Equation 2.8 

where: 

hf  = energy loss due to friction (ft); 

fS   = average friction slope between two adjacent cross sections (ft/ft); and 

∆x  = incremental channel length (ft).  

Average friction slope is calculated by rearranging Equation 2.4.  Equation 2.9 presents 

the equation for average friction slope: 

 
2
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QS f  Equation 2.9 

where: 

 K  = channel conveyance (ft);  

 Q  = discharge (cfs); and 

 Sf  = friction slope (ft/ft). 

A statistical technique known as the average conveyance method is used to calculate the 

average friction slope between adjacent cross sections.  The average conveyance method 

is illustrated by Equation 2.10: 
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where: 

 K1  = channel conveyance at the downstream cross section (ft); 

 K2  = channel conveyance at the upstream cross section (ft); 

 Q1  = discharge at the downstream cross section (cfs); 

 Q2  = discharge at the upstream cross section (cfs); and 

 fS   = average friction slope between two adjacent cross sections (ft/ft). 

Average conveyance method is the default method in HEC-RAS to calculate average 

friction slope (USACE, 2001a).   

 
2.2.4.2 Minor Loss  

Expansion and contraction losses are collectively known as minor loss along a 

reach in a 1-D, steady-state, gradually-varied flow analysis.  Expansion and contraction 

minor loss is related to the energy loss due to changes in cross-sectional shape along the 

reach.  For instance, when water flows downstream, a reach may expand or contract.  As 

the reach expands or contracts, energy loss occurs along a study reach.  Figure 2.2 

illustrates a planform view of a contraction reach and an expansion reach. 

 
 

 Contraction Reach

Expansion Reach 
 

 
Figure 2.2. Planform View of a Contraction Reach and Expansion Reach 
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Energy losses due to expansion and contractions along a reach are accounted for 

through appropriate coefficients.  Once an appropriate coefficient is determined, the 

coefficient is multiplied by the velocity head in order to calculate the energy loss.  

Equation 2.11 and Equation 2.12 present equations for calculating minor loss due to 

expansions or contractions, respectively: 
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where: 

α1  = kinetic energy correction coefficient at the downstream cross section; 

α2  = kinetic energy correction coefficient at the upstream cross section;  

Ce  = coefficient of expansion; 

g  = acceleration of gravity (ft/s2); 

he  = minor loss due to channel expansion at a cross section (ft); 

1v  = average velocity at the downstream cross section (ft/s); and 

2v  = average velocity at the upstream cross section (ft/s). 
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22 αα  Equation 2.12 

where: 

α1  = kinetic energy correction coefficient at the downstream cross section; 

α2  = kinetic energy correction coefficient at the upstream cross section;  

Cc  = coefficient of contraction; 

g  = acceleration of gravity (ft/s2); 

hc  = minor loss due to channel contraction at a cross section (ft); 
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1v  = average velocity at the downstream cross section (ft/s); and 

2v   = average velocity at the upstream cross section (ft/s). 

Typical values for the coefficients of expansion and contraction in a subcritical flow 

regime are given in Table 2.1, which was published by the USACE in the HEC-RAS 

River Analysis System Users Manual Version 3.0 (USACE, 2001b).  

 
Table 2.1. Contraction and Expansion Coefficients (USACE, 2001b)  

Subcritical Flow Contraction and Expansion Coefficients Contraction Expansion
No Transition Loss Computed 0.00 0.00 
Gradual Transitions 0.10 0.30 
Typical Bridge Sections 0.30 0.50 
Abrupt Transitions 0.60 0.80 

 
 
2.2.5 Froude Number 

In 1-D, steady-state, gradually-varied flow analysis, it is important to note the 

effect of gravity on the state of the flow.  Effect of gravity on the state of flow is 

represented by a ratio of inertial forces to gravitational forces (Chow, 1959).  The ratio of 

inertial forces to gravitational forces has been termed Froude number and is presented in 

Equation 2.13: 

 
DgH

vFr =  Equation 2.13 

where: 

 Fr  = Froude number; 

 g  = acceleration of gravity (ft/s2); 

 HD  = hydraulic depth (ft); and  

  v  =  average velocity at a cross section (ft/s). 
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Hydraulic depth is defined in Equation 2.14: 

 
w
AH D =  Equation 2.14 

where: 

A  = cross-sectional area normal to the direction of flow (ft2);   

HD  = hydraulic depth (ft); and 

w  = top width of a cross section along the water surface (ft). 

For rectangular cross sections, hydraulic depth is assumed equal to flow depth.  When the 

Froude number is equal to one, the flow is termed critical flow.  Critical flow is the 

condition where elementary waves can no longer propagate upstream (Bitner, 2003).  If 

the Froude number is greater than one, the flow is termed supercritical flow.  

Supercritical flow is characterized by high velocities where inertial forces become 

dominant at a cross section.  If the Froude number is less than one, then the flow is 

termed subcritical flow.  Subcritical flow is characterized by low velocities and is 

dominated by gravitational forces (Chow, 1959). 

 

2.3 STANDARD STEP METHOD 

Based on the concept of conservation of energy, the standard step method uses 

fundamental hydraulic equations to iteratively calculate water-surface profiles and energy 

grade lines.  Conservation of energy states that “within some problem domain, the 

amount of energy remains constant and energy is neither created nor destroyed.  Energy 

can be converted from one form to another but the total energy within the domain 

remains fixed” (Benson, 2004).  Iteratively, the standard step method applies 

conservation of energy using the energy equation to calculate water-surface elevations 
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and energy grade lines along the reach.  For the purpose of the standard step, the energy 

equation is written as:  

 th
g
vzy

g
vzy +++=++

22

2
11

11

2
22

22
αα  Equation 2.15 

where: 

α1  = kinetic energy coefficient at the downstream cross section; 

α2  = kinetic energy coefficient at the upstream cross section; 

g  = acceleration of gravity (ft/s2);  

ht  = total energy loss between adjacent cross sections (ft); 

1v  = average velocity at the downstream cross section (ft/s); 

2v  = average velocity at the upstream cross section (ft/s); 

y1  = flow depth at the downstream cross section (ft); 

y2  = flow depth at the upstream cross section (ft); 

z1  = bed elevation at the downstream cross section (ft); and 

z2  = bed elevation at the upstream cross section (ft); 

Total energy loss is equal to Equation 2.16 between adjacent cross sections: 

 ceft hhhh ++=  Equation 2.16 

where: 

hc  = minor loss due to channel contraction (ft); 

he  = minor loss due to channel expansion  (ft);  

hf   = energy loss due to friction (ft); and 

ht  = total energy loss between adjacent cross sections (ft).  
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Figure 2.3 illustrates the backwater computation between adjacent cross sections using 

the energy equation where Q denotes discharge, EGL denotes energy grade line, and XS 

denotes cross section. 

 

y2 

z2 
z2 

x1 x2 

y1 

Q 

EGL 

α1v1/2g 

α2v2/2g 

XS 

  ∆x 

 
 

Figure 2.3. Standard Step Method 
 
 
2.3.1 Standard Step Method Algorithm 

The standard step method is one of the coded algorithms in HEC-RAS.  If the 

flow is subcritical, HEC-RAS iteratively calculates a water-surface profile and energy 

grade line beginning with the most downstream cross section.  If the flow is supercritical, 

HEC-RAS calculates a water-surface profile and energy grade line beginning with the 

most upstream cross section.  An outline of the standard step method used in HEC-RAS 

is obtained from the HEC-RAS River Analysis System Hydraulic Reference Manual and is 

stated below (USACE, 2001a): 

1. Assume a water-surface elevation at an upstream cross section (or 

downstream cross section if a supercritical profile is being calculated). 
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2. Based on the assumed water-surface elevation, determine the corresponding K 

and v. 

3. With values from Step 2, compute fS  and solve Equation 2.16 for ht.  fS is 

calculated using the average conveyance method, the default method in HEC-

RAS. 

4. With values from Step 2 and Step 3, solve Equation 2.15 for water-surface 

elevation at the upstream cross section.  The water-surface elevation at the 

upstream cross section is obtained by rearranging Equation 2.15 to Equation 

2.17: 

 th
g
v
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 where: 

α1  = kinetic energy coefficient at downstream cross section;  

α2  = kinetic energy coefficient at upstream cross section; 

g  = acceleration of gravity (ft/s2);  

ht  = total energy loss between adjacent cross sections (ft); 

1v  = average velocity at downstream cross section (ft/s); 

2v  = average velocity at upstream cross section (ft/s); 

WSE2  = water-surface elevation at the upstream cross section (ft); 

y1  = flow depth at downstream cross section (ft); 

y2  = flow depth at upstream cross section (ft); 

z1  = bed elevation at downstream cross section (ft); and 

z2  = bed elevation at upstream cross section (ft). 
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5. Compare the computed value of the water-surface elevation at the upstream 

cross section with the value assumed in Step 1, repeat Step 1 through Step 5 

until the values agree to within 0.01 ft, or a user-defined tolerance. 

In order to start the iterative procedure, a known boundary condition is entered by the 

user.  A boundary condition must be established at the most downstream cross section for 

a subcritical flow profile and at the most upstream cross section for a supercritical flow 

profile.  Four options are presented in HEC-RAS to establish one boundary condition.  

The four boundary condition options include the following: 

1. known water-surface elevation; 

2. critical depth; 

3. normal depth; and 

4. rating curve. 

Critical depth is defined as the flow depth when Fr = 1.  Normal depth is defined as the 

depth corresponding to uniform flow (Chow, 1959).  Normal depth is calculated after the 

user enters the bed slope downstream of the study reach.  The bed slope is equal to the 

energy slope for normal depth and, therefore, used in the flow resistance equation to 

calculate normal depth (USACE, 2001a).   

 

2.4 HEC-RAS FORMAT 

A brief discussion is needed to define terminology in HEC-RAS for a steady-

state, gradually-varied flow analysis.  In this analysis, HEC-RAS Version 3.1.2 was used.  

A project refers to the HEC-RAS model and encompasses ns, geometry data files, and 

steady flow files for a particular river system (USACE, 2001b).  A project is broken 
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down into various plans.  Each plan represents a “specific set of geometric data and flow 

data” (USACE, 2001a).  Channel geometry data such as survey information, channel 

lengths, Manning’s n-values, contraction coefficients, and expansion coefficients are 

entered into a geometry file.  Discharges and boundary conditions are entered into a 

steady flow file.  Once the appropriate information is entered in the geometry file and 

steady flow file, the defined plan is run in a steady flow analysis.  A diagram illustrating 

the HEC-RAS outline is shown in Figure 2.4. 

 

HEC-RAS Project

 

Plan 1

 

Geometry 
File 1 

Steady Flow
File 1 

Plan 2

Geometry 
File 2 

 

Steady Flow 
File 2 

 
 

Figure 2.4. HEC-RAS Format 
 
 
 
2.5 PREVIOUS STUDIES ON CALCULATING WATER-

SURFACE ELEVATIONS IN MEANDER BENDS WITH 
BENDWAY WEIRS 

Previous studies have been completed that used HEC-RAS to calculate water-

surface elevations in meander bends incorporating bendway weirs.  One study was 

completed by Breck (2000) at Montana State University.  Breck used HEC-RAS Version 



 

 20 

2.2 for the purpose of modeling water-surface profiles over a single bendway weir.  This 

study was completed for the Highwood Creek watershed, which is located in Central 

Montana, east of Great Falls.  Figure 2.5 locates Highwood Creek in the vicinity of the 

project site.  As Figure 2.5 illustrates, the valley gradient is relatively flat in the vicinity 

of the project site and sediment deposits tend to be coarse.  Flat valley gradient and 

coarse sediment deposits fill existing channels and force the stream to move laterally.  In 

order to restrict the channel from lateral movement, stream restoration, and bank-

stabilization techniques were initiated in the spring of 1996.   

 

 
 

Figure 2.5. Highland Park Map (adapted from Breck (2000)) 
 
 

The project reach was fairly prismatic, approximately 200 ft in length.  Five 

bendway weirs and a vortex weir were constructed along the reach.  A vortex weir is a U- 

or V-shaped, instream rock structure typically composed of native material (Rosgen, 

1996).   

Project
Site 
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In order to build a HEC-RAS model for Highwood Creek, the following data were 

collected in the field: 

1. Flow rate measurements using two methods: 

a. current meter; and 

b. United States Geological Survey (USGS) Database. 

2. Manning’s n-values: 

a. derived from roughness coefficient tables outlined in Open-Channel 

Hydraulics (Chow, 1959). 

3. Topographical survey using a total station surveying device which surveyed: 

a. cross section upstream of reach; 

b. cross section downstream of reach; and 

c. water-surface elevations at upstream and downstream cross section. 

In addition to the surveyed cross sections upstream and downstream of the study reach, 

survey data needed to be collected at the bendway weir.  Two methods were presented by 

Breck to survey the bendway weir.  Method 1 established five cross sections spaced 

equally, starting upstream and ending downstream of the bendway weir.  Figure 2.6 

illustrates the marked cross sections (XS) along the study reach.  XS2 through XS6 

illustrate the cross-section spacing across the bendway weir.  Water-surface elevations 

were also collected at these cross sections.  Unlike Method 1, Method 2 used “one cross 

section starting at the downstream end of the weir, perpendicular to the study reach, with 

points being taken along the main body of the structure and continuing perpendicular to 

the channel at the upstream end.”  Cross sections were also surveyed upstream and 

downstream of the bendway weir.  Method 2 was used for the ease of collecting data but 
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the method was not used in the analysis since the survey did not provide enough detail to 

accurately calculate water-surface elevations across a bendway weir.    

 

 
 

Figure 2.6. Study Reach Survey (adapted from Breck (2000)) 
 
 

From the field data, multiple HEC-RAS models were built in order to determine 

what methodology produced the most accurate output of water-surface elevations.  Seven 

models, defined as “Options,” were built in HEC-RAS and each model is outlined in 

Table 2.2.  Each option assumed Manning’s n was determined from field data and, 

therefore, further calibration of Manning’s n was not required as part of the HEC-RAS 

analysis. 

 

XS1

XS3
XS5

XS6

XS4

XS2

XS7
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Table 2.2. Model Option Descriptions (Breck, 2000) 
Model 
Option Description 

1 Survey Method 1 with interpolated cross sections between Station 2 and Station 
6; ineffective flow lines on the outside of bendway weir. 

2 Survey Method 1 with interpolated cross sections between Station 2 and Station 
6; blocked obstructions replace bendway-weir profile in cross-section survey. 

3 Survey Method 1 without additional options. 

4 Survey Method 2 without additional options. 

5 Survey Method 2 with one ineffective flow area. 

6 Survey Method 2 with one blocked obstruction. 

7 Partial blocked obstruction with ineffective flow areas.  

 
 

Results of water-surface elevations and flow depths calculated by HEC-RAS 

confirmed that Option 1 and Option 2 were the most accurate HEC-RAS models.  Breck 

summarized the accuracy of Option 1 and Option 2, and these results are shown in Table 

2.3.  From these results, Breck noted that the difference between Option 1 and Option 2 is 

not significant, but by adding additional flow rates over various weir dimensions might 

determine the superior option.  Breck (2000) also noted that Option 1 and Option 2 might 

show more accurate water-surface elevations if further calibration of Manning’s n was 

added to the scope of the analysis. 
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Table 2.3. Option 1 and Option 2 Accuracy (Breck, 2000) 

Option 
 

Option 1 
Model Flow 

Depth       
(ft) 

Option 2 
Model Flow 

Depth       
(ft) 

Observed 
Depth      

(ft) 

Absolute 
Error        
(ft) 

Absolute 
Error       
(ft) 

1 0.95 1.09 1.05 0.100 0.040 
2 1.01 1.08 1.04 0.030 0.040 
1 0.81 0.81 0.92 0.110 0.110 
2 0.86 0.86 0.95 0.090 0.090 
1 0.87 0.86 0.98 0.110 0.120 
2 0.92 0.91 1.00 0.080 0.090 
1 0.93 0.92 1.06 0.130 0.140 
2 0.98 0.97 1.08 0.100 0.110 
1 0.88 0.88 0.92 0.040 0.040 
2 0.94 0.94 0.95 0.010 0.010 

   

Average 
Absolute 

Error
0.080 0.079 

 
 
 
 
2.6 NATURE OF FLOW IN MEANDER BENDS 

Unlike straight channels where streamlines are uniform and parallel, meander 

bends create streamlines that are curvilinear and interwoven.  Curvilinear and interwoven 

streamlines result in spiral currents and secondary currents (Chow, 1959).  Spiral currents 

refer to movement of water particles along a helical path in the general direction of flow 

(Chow, 1959).  In general, when water moves downstream, a channel curve to the right 

causes a counterclockwise spiral while a channel curve to the left causes a clockwise 

spiral.  Secondary currents refer to velocity components parallel to the cross section.  

Spiral currents and secondary currents created in a meander bend are the result of the 

three factors stated by Chow (1959) in Open-Channel Hydraulics: 



 

 25 

1. friction on the channel walls; 

2. centrifugal force; and 

3. vertical velocity distribution which exists in the approach channel. 

Centrifugal forces cause the phenomenon in meander bends known as superelevation.  

Superelevation is the difference in water-surface elevation between the outside bank and 

inside bank along a cross section.  Figure 2.7 illustrates superelevation along with the 

pressure distribution in a meander bend cross section, which creates spiral currents and 

secondary currents.  Development of spiral currents and secondary currents is an 

additional source of minor losses due to meander bends.   

 

 

Figure 2.7. Pressure Distribution in a Meander Bend (Mockmore, 1944)  
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2.7 PREVIOUS STUDIES ON CALCULATING MINOR 
LOSSES DUE TO MEANDER BENDS 

Various studies have been completed to estimate minor loss due to meander 

bends.  Six methods to calculate minor loss due to meander bends are introduced in this 

section. 

 
2.7.1 Yarnell and Woodward Method 

Yarnell and Woodward (1936) stated in the bulletin, Flow of Water Around 180-

Degree Bends, that minor losses due to bends could be calculated by Equation 2.18: 

 
g

v
r
wChBEND 2

**
2

=  Equation 2.18 

where: 

C  = coefficient of loss; 

g  = acceleration of gravity (ft/s2); 

hBEND  = energy loss due to bend (ft); 

r  = inner radius (ft); 

v   =  average velocity at a cross section (ft/s); and 

w  = width of channel (ft). 

Assuming the channel is rectangular, Table 2.4 contains the list of channel dimensions 

and representative C-values.  Yarnell and Woodward point out that coefficients shown in 

Table 2.4 only apply to the channel dimensions and bend radii stated for the coefficient. 
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Table 2.4. Yarnell and Woodward C-values 
Channel Dimensions

C 
 

Length    
(in.) 

Width    
(in.) 

Inner Radius   
(in.) 

0.18 10 10   
0.23 5 10 5 
0.23 5 10 10 

 
 

2.7.2 Scobey Method 

Chow (1959) reported in his book, Open-Channel Hydraulics, a method to 

calculate minor loss due to meander bends by Scobey in 1933.  Scobey stated that minor 

losses in bends are taken into account by increasing n-values by 0.001 for each 20 degree 

of curvature in 100 ft of channel, but it is uncertain that n increases more than 0.002 to 

0.003.  Scobey’s method was developed on the basis of flume tests.  

 
2.7.3 Shukry Method 

Chow (1959) reported in his book, Open-Channel Hydraulics, a method to 

calculate minor loss due to meander bends by Shukry in 1950.  Shukry used a 

rectangular, steel flume to demonstrate that minor losses due to flow resistance in bends 

can be expressed as a coefficient multiplied by the velocity head at a cross section.  

Equation 2.19 illustrates this expression: 

 
g

vfh cb 2
*

2

=  Equation 2.19 

where: 

fc  = coefficient of curve resistance; 

g  = acceleration of gravity (ft/s2);  



 

 28 

hb  = minor loss due to the bend (ft); and 

v  = average velocity at a cross section (ft/s). 

Shukry identified four significant parameters in order to classify flow in a bend.  These 

parameters are shown in the following list: 

1. rc/b 

2. y/b 

3. θ/180 

4. Re 

where: 

b  = channel width (ft); 

rc  = radius of curvature (ft); 

Re  = Reynold’s number; 

θ  = deviation angle of the curve; and  

y  = flow depth (ft). 

Reynold’s number is expressed by the following equation: 

 
υ
Rv

=Re  Equation 2.20 

where: 

  R  =  hydraulic radius (ft); 

Re  = Reynold’s number; 

υ  = kinematic viscosity of a fluid (ft2/s); and  

v  = average velocity at a cross section (ft/s). 

Reynold’s number ranged from 10,000 to 80,000 in Shukry’s experiments.  
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2.7.4 Yen and Howe Method 

Brater and King (1976) reported in their book, Handbook of Hydraulics, a method 

to calculate minor loss due to meander bends by Yen and Howe in 1942.  Yen and Howe 

reported that minor loss due to meander bends is calculated by multiplying a coefficient 

by the velocity head at a cross section.  Equation 2.21 presents the formula to calculate 

minor loss due to meander bend: 

 
g

vKh bb 2
*

2

=  Equation 2.21 

where: 

g  = acceleration of gravity (ft/s2); 

hb  = minor loss due to bend (ft); 

Kb  = coefficient of curve resistance; and 

  v  =   average velocity at a cross section (ft/s).  

Kb is equal to 0.38 for a 90° bend having a channel width of 11 in. and a radius of 

curvature of 5 ft.  

 
2.7.5 Tilp and Scrivner Method 

Brater and King (1976) reported in their book, Handbook of Hydraulics, a method 

to calculate minor loss due to meander bends by Tilp and Scrivner in 1964.  Tilp and 

Scrivner suggested that minor losses due to bends could be estimated from the following 

equation: 

 ( )
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where: 

g  = acceleration of gravity (ft/s2); 

hb  = minor loss due to bend (ft); 

Σ∆°  = summation of deflection angles; and  

  v  =  average velocity at a cross section (ft/s). 

Tilp and Scrivner developed this equation based on large, concrete-lined canals.  

 
2.7.6 Lansford Method 

Robertson introduced an equation by Lansford in the American Society of Civil 

Engineers Paper No. 2217 (Mockmore, 1944).  Lansford reported that difference in 

pressure of fluid flowing in a bend could be expressed by Equation 2.23: 
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=∆  Equation 2.23 

where: 

b  = channel width (ft); 

∆h  = difference in pressure of fluid flowing (ft); 

g  = acceleration of gravity (ft/s2); 

rc  = radius of curvature (ft); and 

  v   =  average velocity at a cross section (ft/s).  

This relationship is due to centrifugal forces of water acting on a channel bend and was 

developed for closed conduit bends.    
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2.7.7 Summary 

Limitations were required to calculate minor loss due to meander bend in each 

method stated in Section 2.7.  For instance, the Yarnell and Woodward method noted that 

the coefficient of loss required to calculate energy loss due to the bend in Equation 2.18 

only applied to design flumes with dimensions specified in Table 2.4.  Table 2.4 

indicated that the maximum channel length and channel width was 10 in.  The Shukry 

method used Equation 2.19 to calculate minor loss due to the bend using a coefficient of 

curve resistance.  Coefficient of curve resistance was developed for a rectangular, steel 

flume with Reynold’s numbers ranging from 10,000 to 80,000.  The Yen and Howe 

method noted that minor loss due to the bend is calculated in Equation 2.21 using a 

coefficient of curve resistance.  Coefficient of curve resistance is limited to a design 

flume with a 90° bend, 11-in. channel width, and 5-ft radius of curvature.   

Constraints required to calculated the minor loss due to meander bend limited the 

applicability of each method.  A method needs to be developed in order to calculate 

minor loss due to meander bend in open-channel systems for an array of bend angles, 

channel widths, and channel lengths. 


